
 FAUCET stacking
The whole is greater than the sum of its parts

Brad Cowie

Faucet control modes
● Standalone mode

○ a.k.a independant, traditional, etc

● Stacked mode
○ a.k.a faucet fabric, distributed, etc

Standalone mode
● Default mode for faucet
● Learning/Routing happens per individual switch
● Pros

○ Simple
○ Expected behaviour for a switch

● Cons
○ Doesn’t utilise full network information controller has
○ Building a loop free network is more difficult (STP-like protocol required)

Faucet internals: standalone mode
● Each switch is mapped to a Valve
● A Valve instance implements network

behaviour
○ Learning
○ Routing
○ ACLs
○ etc

● In standalone mode, no coordination

sw2

sw1

sw3

Faucet

Valve
sw1

Valve
sw2

Valve
sw3

Stacked mode
● New mode for faucet
● The whole network acts as one big switch/router

○ Made up by individual devices that can come and go

● Faucet tracks network topology and makes decisions based on that
● Pros

○ Easily build a loop-free topology
○ Easily recover from failure scenarios
○ Less configuration required

● Cons
○ More complexity in controller
○ Not as obvious when you look at individual switch’s flow table what is going on

Faucet internals: stacked mode
● Co-ordination between Valves

sw2

sw1

sw3

Faucet

Valve
sw1

Valve
sw2

Valve
sw3

Valves
Manager

● Use networkx to construct graph
○ root datapath (root)
○ datapaths (nodes)
○ stack links (edges)

● The graph can then be used to calculate shortest path
● Shortest path allows stacking to provide multiple redundant paths between

switches without looping broadcast traffic

How does it work?

Stack algorithms
● Stacking code is built to be modular
● For different scenarios/topologies we can use different algorithms

Stack flooding algorithms
● ValveFloodStackManagerNoReflection

○ For stacks of size 2 (all switches directly connected to root)
○ Non-root switches simply flood to the root
○ Root switch simply floods to all other switches

● ValveFloodStackManagerReflection
○ For stacks of size > 2 (reflect floods off of root)
○ The root switch reflects incoming floods back out
○ Non-root switches flood only to the root
○ Non-root switches flood packets from the root locally and to downstream switches

● More optimal algorithms to come

Additional features of stacking
● Cable verification & link testing

○ Is my network physically wired the same as my config?
○ Do my stack links work?

● Automatic VLAN expression
○ Faucet automatically configures stack links to have the VLANs you need on them

● Failover
○ Redundant links
○ Redundant root

● Tunneling
○ Can automatically stitch up tunnel over network

Simplest stack topology
● Two switches
● Single stack link

Switch 1

VLAN 100

10.0.1.1/24

Host 1

Switch 2

VLAN 100

10.0.1.2/24

Host 2

Stack link

dps:
 switch1:
 dp_id: 0x1
 hardware: "Open vSwitch"
 stack:
 priority: 1
 interfaces:
 1:
 description: "host1"
 native_vlan: 100
 2:
 stack:
 dp: "switch2"
 port: 2
 switch2:
 dp_id: 0x2
 hardware: "Open vSwitch"
 interfaces:
 1:
 description: "host2"
 native_vlan: 100
 2:
 stack:
 dp: "switch1"
 port: 2

Simplest stack topology

Use switch1 as root of stack

Define stack links between
switches

More complicated topologies
● Inter-VLAN routing
● Tunneling
● Resilient network designs

Inter-VLAN routing
● Allow hosts on different VLANs

to route between each other
Switch 1

VLAN 100

Faucet VIP:
10.0.1.254/24

10.0.1.1/24

Host 1

VLAN 200

Faucet VIP:
10.0.2.254/24

10.0.2.1/24

Server 1

vlans:
 hosts:
 vid: 100
 faucet_vips: ['10.0.1.254/24']
 faucet_mac: "00:00:00:00:00:11"
 servers:
 vid: 200
 faucet_vips: ['10.0.2.254/24']
 faucet_mac: "00:00:00:00:00:22"
routers:
 hosts-servers:
 vlans: ['hosts', 'servers']
dps:
 switch1:
 dp_id: 0x1
 hardware: "Open vSwitch"
 interfaces:
 1:
 description: "host1"
 native_vlan: "hosts"
 2:
 description: "server1"
 native_vlan: "servers"

Inter-VLAN routing

Define virtual IPs on VLANs
with routing enabled

vlans:
 hosts:
 vid: 100
 faucet_vips: ['10.0.1.254/24']
 faucet_mac: "00:00:00:00:00:11"
 servers:
 vid: 200
 faucet_vips: ['10.0.2.254/24']
 faucet_mac: "00:00:00:00:00:22"
routers:
 hosts-servers:
 vlans: ['hosts', 'servers']
dps:
 switch1:
 dp_id: 0x1
 hardware: "Open vSwitch"
 interfaces:
 1:
 description: "host1"
 native_vlan: "hosts"
 2:
 description: "server1"
 native_vlan: "servers"

Inter-VLAN routing

Define a VLAN router

Multi-datapath inter-VLAN routing
● Allow hosts on different

VLANs to route between
each other even if they are
on different switches

● Automatically enabled
when stack ports present
and VLAN router statement
is present

Switch 1

VLAN 100

Faucet VIP:
10.0.1.254/24

10.0.1.1/24

Host 1

VLAN 200

Faucet VIP:
10.0.2.254/24

10.0.2.1/24

Server 1

Switch 2

VLAN 100

Faucet VIP:
10.0.1.254/24

10.0.1.2/24

Host 2

VLAN 200

Faucet VIP:
10.0.2.254/24

10.0.2.2/24

Server 2

Tunneling
● Automatic tunnel stitching

over stack topology
● Use faucet ACLs to decide

what flows to put inside tunnel
● When stack topology changes

tunnel gets automatically
rerouted

Switch 1

VLAN 100

10.0.1.1/24

Host 1

Switch 2 Switch 3

VLAN 200

10.0.2.1/24

Host 2

acls:
 tunnel-to-host2:
 - rule:
 actions:
 output:
 tunnel:
 type: "vlan"
 tunnel_id: 902
 dp: "switch3"
 port: 1
dps:
 switch1:
 ...
 interfaces:
 1:
 description: "host1"
 native_vlan: 100
 acls_in: ["tunnel-to-host2"]
 2:
 stack:
 dp: "switch2"
 port: 2
 switch2:
 ...
 switch3:
 ...

Tunneling

ACL doesn’t have specific match
so will match all packets

Apply as a port ACL to match
everything on that port

acls:
 tunnel-to-host2:
 - rule:
 actions:
 output:
 tunnel:
 type: "vlan"
 tunnel_id: 902
 dp: "switch3"
 port: 1
dps:
 switch1:
 ...
 interfaces:
 1:
 description: "host1"
 native_vlan: 100
 acls_in: ["tunnel-to-host2"]
 2:
 stack:
 dp: "switch2"
 port: 2
 switch2:
 ...
 switch3:
 ...

Tunneling

New “tunnel” output action

acls:
 tunnel-to-host2:
 - rule:
 actions:
 output:
 tunnel:
 type: "vlan"
 tunnel_id: 902
 dp: "switch3"
 port: 1
dps:
 switch1:
 ...
 interfaces:
 1:
 description: "host1"
 native_vlan: 100
 acls_in: ["tunnel-to-host2"]
 2:
 stack:
 dp: "switch2"
 port: 2
 switch2:
 ...
 switch3:
 ...

Tunneling

Type of tunnel, only VLAN
tunnels supported right now

acls:
 tunnel-to-host2:
 - rule:
 actions:
 output:
 tunnel:
 type: "vlan"
 tunnel_id: 902
 dp: "switch3"
 port: 1
dps:
 switch1:
 ...
 interfaces:
 1:
 description: "host1"
 native_vlan: 100
 acls_in: ["tunnel-to-host2"]
 2:
 stack:
 dp: "switch2"
 port: 2
 switch2:
 ...
 switch3:
 ...

Tunneling

Which VLAN ID to use

acls:
 tunnel-to-host2:
 - rule:
 actions:
 output:
 tunnel:
 type: "vlan"
 tunnel_id: 902
 dp: "switch3"
 port: 1
dps:
 switch1:
 ...
 interfaces:
 1:
 description: "host1"
 native_vlan: 100
 acls_in: ["tunnel-to-host2"]
 2:
 stack:
 dp: "switch2"
 port: 2
 switch2:
 ...
 switch3:
 ...

Tunneling

Where should packets
matching this ACL go?

Tunneling - both directions

Switch 1

VLAN 100

10.0.1.1/24

Host 1

Switch 2 Switch 3

VLAN 200

10.0.1.2/24

Host 2

acls:
 tunnel-to-host1:
 - rule:
 actions:
 output:
 tunnel:
 Type: "vlan"
 tunnel_id: 901
 dp: "switch1"
 port: 1
 tunnel-to-host2:
 - rule:
 actions:
 output:
 tunnel:
 type: "vlan"
 tunnel_id: 902
 dp: "switch3"
 port: 1

Resiliency
● Stacking solves one resiliency problem at the cost of introducing another

○ Network graph + shortest path allows us to introduce loops
○ Network graph needs a switch to be the root

● One more feature is required to allow automatic recovery from hardware
failure

○ Multi-root stack

Bulletproof faucet
● Adding stack priority values to multiple

switches allows us to have multiple root
candidates

● When a root fails another can take over

Switch 3

VLAN 100

10.0.1.1/24

Host 1

Switch 1

stack: priority: 1

Switch 4

VLAN 100

10.0.1.2/24

Host 2

Switch 2

stack: priority: 1

Bulletproof faucet
● Adding stack priority values to multiple

switches allows us to have multiple root
candidates

● When a root fails another can take over

Switch 3

VLAN 100

10.0.1.1/24

Host 1

Switch 1

stack: priority: 1

Switch 4

VLAN 100

10.0.1.2/24

Host 2

Switch 2

stack: priority: 1

Bulletproof faucet
● Can survive a cable failure

Switch 3

VLAN 100

10.0.1.1/24

Host 1

Switch 1

stack: priority: 1

Switch 4

VLAN 100

10.0.1.2/24

Host 2

Switch 2

stack: priority: 1

Bulletproof faucet
● Can survive a switch failure

Switch 3

VLAN 100

10.0.1.1/24

Host 1

Switch 1

stack: priority: 1

Switch 4

VLAN 100

10.0.1.2/24

Host 2

Switch 2

stack: priority: 1

Want to try stacking for yourself?
● Complete the tutorial series on our website
● In an hour you will be able to configure everything we talked about today

○ Basic stacking
○ Inter-VLAN routing with stacking
○ Tunneling over a stack
○ Redundant stack links
○ Multi-root stack

https://docs.faucet.nz/en/latest/tutorials/stacking.html

Thanks
● Josh Bailey
● Mark Bishop (a.k.a mab68)

Questions?

https://faucet.nz

@faucetsdn

brad@waikato.ac.nz

@nzgizmoguy

