
FAUCET AT  
SANDIA NATIONAL LABORATORIES

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology &
Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the
U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.  
SAND No. SAND2019-12281 C.

Timothy Toole

ABOUT SANDIA NATIONAL LABORATORIES 2

Sandia National Laboratories is a multimission laboratory
managed and operated by National Technology and

Engineering Solutions of Sandia LLC, a wholly owned
subsidiary of Honeywell International Inc. for the U.S.

Department of Energy’s National Nuclear Security
Administration under contract DE-NA0003525.

SAND 2018-4900 PE

SANDIA IS A FEDERALLY FUNDED  
RESEARCH AND DEVELOPMENT CENTER

Main sites 
 Albuquerque, New Mexico  
 Livermore, California

WHO WE REPRESENT AT SANDIA

▸ Multiple groups at Sandia conducting research & development in computing, information science
and cybersecurity

▸ Ensures security of critical military, government, and commercial networks using trusted systems
to detect anomalies and intrusions

▸ Representing a team that focuses on system architectures, computer networks and analysis

▸ Not necessarily working on fundamental science, but involved in developing and integrating new
or novel techniques

▸ Share and advise other groups and teams that benefit from the techniques

▸ Experience with networking, virtualization, computer systems & science

3

4

▸ Cloud (orchestration) environments are complex

▸ Require multiple isolated physical & logical networks

▸ Applies to Openstack, VMware, Kubernetes, etc.

▸ Desire to build and deploy multiple, isolated cloud environments

▸ Full cloud environment per tenant

▸ Perform application testing

▸ Gain real-world experience with SDN

▸ Prior controller experience was in 
a limited scope

▸ Extend beyond academic environment

▸ Become an operator & maintainer of the 
network

BUILDING AND UNDERSTANDING CLOUD ENVIRONMENTS

INSPIRATION: WHY THE SUPERCOMPUTING NETWORK WAS IMPORTANT

▸ PRODUCTION - Stability!

▸ Multi-vendor

▸ Statistics (Gauge)

▸ Analytics (Poseidon)

▸ https://github.com/wandsdn/sc18-
faucet-configs

▸ Use this design as a foundation for
our use

5

MAJOR Kudos to

 the SC18 team!

https://github.com/wandsdn/sc18-faucet-configs
https://github.com/wandsdn/sc18-faucet-configs

STARTING OUT

▸ Solicited price quotes from Allied Telesis, Cisco, NoviFlow, HPE-Aruba

▸ Used model numbers from SC18 diagram and Faucet documentation

▸ Several phone conversations with vendor reps

▸ Cleaned out all of our [legacy] Arista switches (sad day)

▸ Switching hardware list:

▸ EdgeCore Wedge 100BF-32X (Tofino) with NoviWare NOS 
 

▸ Allied Telesis x950 
 
 

▸ Many HPE-Aruba 2930F switches for 1G Copper connections

6

High bandwidth

High bandwidth

GOALS AND APPROACH

▸ Desire to build out multiple, isolated cloud environments without physically re-wiring or
managing a switch CLI

▸ Automate testing & deployment process as much as possible - Python + bash

▸ Full cloud environment per tenant

7

100% SDN Network
(at least try)

LAYER 1 - CONNECT ALL THE THINGS

▸ 5 Physical interfaces to connect per compute node

▸ IPMI (low bandwidth)

▸ Two 10Gb/s interfaces (high bandwidth)

▸ Two 1Gb/s interfaces (low bandwidth)

▸ Keep good notes: physical host interface <-> switchport mappings

8

+

9

interfaces:
 1:
 name: "Port 1"
 description: “cluster0 blade2 ipmi"
 native_vlan: ipmi-tenant-a-100
 2:
 name: "Port 2"
 description: “cluster0 blade2 eth1"
 native_vlan: mgmt-tenant-a-101
 3:
 name: "Port 3"
 description: “cluster0 blade2 eth10"
 native_vlan: guest-tenant-a-102
 4:
 name: “Port 4”
 description: “cluster0 blade2 eth11”
 native_vlan: ext-tenant-1-103

Routing is handled externally to Faucet:
‣ Static route(s) pushed to a Linux-based “routing VM (+ NAT)”

Incredibly easy to automate:
‣ Ansible (FAUCET config generation), Python (pushing L3 routes to Linux VM), Cobbler (OS

deployment)

LAYER 2 - START SIMPLY

SIMPLE FAUCET LAYER 2 DESIGN: IT WORKS!

user@node1:~$ ping 192.168.1.1
PING 192.168.1.1 (192.168.1.1) 56(84) bytes of data.
64 bytes from 192.168.1.1: icmp_seq=1 ttl=64 time=0.327 ms
64 bytes from 192.168.1.1: icmp_seq=2 ttl=64 time=0.221 ms
64 bytes from 192.168.1.1: icmp_seq=3 ttl=64 time=0.242 ms

10

Used Cobbler to deploy 
OpenStack & VMware

AT = Allied Telesis  
AR = Aruba (HPE)

NEXT STEP: L3 STACK ROUTING

▸ This is where the “fun” begins

▸ This is where lessons are learned

▸ Topology is generally architected by
understanding of where traffic flows

11

AT = Allied Telesis  
AR = Aruba (HPE)

* 192.88.99.0/24 - IANA Reserved: Deprecated (6to4 Relay Anycast)

TESTING SCRIPTS - ALL DONE INSIDE A VIRTUAL MACHINE

▸ Use the Faucet tutorial method, but for testing configs: Open vSwitch and Network Namespaces

▸ ./make_network.sh - based solely on how the human wired up the switches
 # Create DP atx950
 sudo ovs-vsctl add-br atx950 \
 -- set bridge atx950 other-config:datapath-id=0xe01aea517a38 \
 -- set bridge atx950 other-config:disable-in-band=true \
 -- set bridge atx950 fail_mode=secure \
 -- set-controller atx950 tcp:127.0.0.1:6653 tcp:127.0.0.1:6654

 # Create Trunk Ports between atx950 and ar2930f-1
 sudo ovs-vsctl add-port atx950 atx950-p1 \
 -- set interface atx950-p1 type=patch \
 -- set interface atx950-p1 options:peer=ar2930f-1-p49 \
 -- set interface atx950-p1 ofport_request=1

 sudo ovs-vsctl add-port ar2930f-1 ar2930f-1-p49 \
 -- set interface ar2930f-1-p49 type=patch \
 -- set interface ar2930f-1-p49 options:peer=atx950-p1 \
 -- set interface ar2930f-1-p49 ofport_request=49

‣ ./make_hosts.sh
 # Create Test Namespaces and Connect them - atx950
 create_ns host1 192.168.11.2/24
 as_ns host1 ip route add default via 192.168.11.1
 sudo ovs-vsctl add-port atx950 veth-host1 \
 -- set interface veth-host1 ofport_request=5

‣ ./run_tests.sh
 # as_ns host3 ping -q -c3 192.168.10.2 > /dev/null

▸ Modify the “Hardware: Open vSwitch” line in faucet.yaml

12

HARDWARE ISSUES

faucet.valve ERROR DPID 282562769570368 (0x100fd4581ca40) ar2930f-2 OFError type: OFPET_TABLE_FEATURES_FAILED
code: OFPTFFC_EPERM
version=0x4,msg_type=0x1,msg_len=0x4c,xid=0x3f6fcf42,OFPErrorMsg(code=5,data=bytearray(b’\x04\x12\x04\x18?
o\xcfB\x00\x0c\x00\x00\x00\x00\x00\x00\x00x\x00\x00\x00\x00\x00\x00port_acl\x00\x00\x00\x00\x00\x00\x00\x00\x00\x
00\x00'),type=13)Frame 653:
142 bytes on wire (1136 bits), 142 bytes captured (1136 bits)

Ethernet II, Src: ec:eb:b8:33:05:c0, Dst: 0c:c4:7a:54:a5:65
Internet Protocol Version 4, Src: 192.168.1.13, Dst: 192.168.1.60
Transmission Control Protocol, Src Port: 61578, Dst Port: 6653, Seq: 987130365, Ack: 1243404425, Len: 76
OpenFlow 1.3
 Version: 1.3 (0x04)
 Type: OFPT_ERROR (1)
 Length: 76
 Transaction ID: 3080866189
 Type: OFPET_TABLE_FEATURES_FAILED (13)
 Code: OFPTFFC_EPERM (5)
 Body: 04120428b7a2498d000c0000000000000088000000000000...
 Version: 1.3 (0x04)
 Type: OFPT_MULTIPART_REQUEST (18)
 Length: 1064
 Transaction ID: 3080866189
 Type: OFPMP_TABLE_FEATURES (12)
 Flags: 0x0000
 Pad: 00000000
 Table features
[Malformed Packet: openflow_v4]
 [Expert Info (Error/Malformed): Malformed Packet (Exception occurred)]
 [Malformed Packet (Exception occurred)]
 [Severity level: Error]
 [Group: Malformed]

13

JOSH: [RTFM] ENABLE DEBUGGING ON THE SWITCH

Sep 23 13:14:34 192.168.1.12 OPFL: OPFL eOFNetTask:{ "error_code":"OFPTFFC_EPERM","error_reason":"There is no space available in the H/W to
accomodate the new pipeline","process_time":"0.166 ms","pipeline":[{"table_id":0,"name":"port_acl","
Sep 23 13:14:34 192.168.1.12 OPFL: OPFL eOFNetTask:config":"0x3","max_entries":32,"metadata_match":"0x0","metadata_write":"0x0","match":
["in_port"],"wildcards":["in_port"],"next_tables":["1","5","6","7"],"instructions":["goto_table","apply_
Sep 23 13:14:34 192.168.1.12 OPFL: OPFL eOFNetTask:actions"],"apply_actions":["output","pop_vlan","group"]},{"table_id":
1,"name":"vlan","config":"0x3","max_entries":288,"metadata_match":"0x0","metadata_write":"0x0","match":["in_port","vlan_
Sep 23 13:14:34 192.168.1.12 OPFL: OPFL eOFNetTask:vid","eth_type","eth_dst/has_mask"],"wildcards":
["in_port","vlan_vid","eth_type","eth_dst"],"next_tables":["2"],"instructions":["goto_table","apply_actions"],"apply_setfield":["vlan_vid"],"
Sep 23 13:14:34 192.168.1.12 OPFL: OPFL eOFNetTask:apply_actions":["output","set_field","pop_vlan","push_vlan","group"]},{"table_id":
2,"name":"eth_src","config":"0x3","max_entries":800,"metadata_match":"0x0","metadata_write":"0x0","match":[
Sep 23 13:14:34 192.168.1.12 OPFL: OPFL eOFNetTask:"vlan_vid","in_port","eth_src","eth_type","eth_dst/has_mask"],"wildcards":
["vlan_vid","in_port","eth_src","eth_type","eth_dst"],"next_tables":["3","4","5","6","7"],"instructions":["goto_tab
Sep 23 13:14:34 192.168.1.12 OPFL: OPFL eOFNetTask:le","apply_actions"],"apply_setfield":["vlan_vid","eth_dst"],"apply_actions":
["output","set_field","pop_vlan","push_vlan","group"],"next_tables_miss":["6"],"instructions_miss":["goto_table"
Sep 23 13:14:34 192.168.1.12 OPFL: OPFL eOFNetTask:]},{"table_id":3,"name":"ipv4_fib","config":"0x3","max_entries":
608,"metadata_match":"0x0","metadata_write":"0x0","match":["vlan_vid","eth_type","ipv4_dst/has_mask"],"wildcards":["vlan_vid"
Sep 23 13:14:34 192.168.1.12 OPFL: OPFL eOFNetTask:,"eth_type","ipv4_dst"],"next_tables":["5","6","7"],"instructions":
["goto_table","apply_actions"],"apply_setfield":["eth_dst","eth_src","vlan_vid"],"apply_actions":["output","set_field","po
Sep 23 13:14:34 192.168.1.12 OPFL: OPFL eOFNetTask:p_vlan","push_vlan","group"]},{"table_id":4,"name":"ipv6_fib","config":"0x3","max_entries":
608,"metadata_match":"0x0","metadata_write":"0x0","match":["ipv6_dst/has_mask","vlan_vid","eth_typ
Sep 23 13:14:34 192.168.1.12 OPFL: OPFL eOFNetTask:e"],"wildcards":["ipv6_dst","vlan_vid","eth_type"],"next_tables":
["5","6","7"],"instructions":["goto_table","apply_actions"],"apply_setfield":["eth_dst","eth_src","vlan_vid"],"apply_actions
Sep 23 13:14:34 192.168.1.12 OPFL: OPFL eOFNetTask:":["output","set_field","pop_vlan","push_vlan","group"]},{"table_id":
5,"name":"vip","config":"0x3","max_entries":64,"metadata_match":"0x0","metadata_write":"0x0","match":["ip_proto","icmpv6
Sep 23 13:14:34 192.168.1.12 OPFL: OPFL eOFNetTask:_type","arp_tpa","eth_dst","eth_type"],"wildcards":
["ip_proto","icmpv6_type","arp_tpa","eth_dst","eth_type"],"next_tables":["6","7"],"instructions":["goto_table","apply_actions"],"apply_act
Sep 23 13:14:34 192.168.1.12 OPFL: OPFL eOFNetTask:ions":["output","pop_vlan","group"]},{"table_id":
6,"name":"eth_dst","config":"0x3","max_entries":800,"metadata_match":"0x0","metadata_write":"0x0","match":["vlan_vid","eth_dst"],"instructio
Sep 23 13:14:34 192.168.1.12 OPFL: OPFL eOFNetTask:ns":["apply_actions"],"apply_actions":["output","pop_vlan","group"],"next_tables_miss":
["7"],"instructions_miss":["goto_table"]},{"table_id":7,"name":"flood","config":"0x3","max_entries":96
Sep 23 13:14:34 192.168.1.12 OPFL: OPFL eOFNetTask:,”metadata_match":"0x0","metadata_write":"0x0","match":["in_port","vlan_vid","eth_dst/
has_mask"],"wildcards":["in_port","vlan_vid","eth_dst"],"instructions":["apply_actions"],"apply_actions

Lessons:

‣ Read the documentation. Understand it.

‣ Setup a syslog server to capture OF messages and errors from switches

14

15

ar2930f-2# show openflow instance aggregate flow-table

 OpenFlow Instance Flow Table Information

 Table Flow Miss  
 ID Table Name Count Count Goto Table  
 ----- --------------------- -------- ------------- ------------- 
 0 port_acl 1 0 1, 5, 6, 7  
 1 vlan 1 0 2  
 2 eth_src 16 0 3, 4, 5, 6, 7 
 3 ipv4_fib 3 0 5, 6, 7  
 4 ipv6_fib 6 0 5, 6, 7  
 5 vip 17 0 6, 7  
 6 eth_dst 1 0 *  
 7 flood 14 0 *

‣ TFM = Table Features Message  
 
OpenFlow Specification 1.3 
7.3.5.5 Table Features 
 
The OFPMP_TABLE_FEATURES multipart type allows
a controller to both query for the capabilities of
existing tables, and to optionally ask the switch to
reconfigure its tables to match a supplied
configuration.

ADD A SYSLOG SERVER TO THE OOBM NETWORK

IT WORKS! (AGAIN)

Faucet vlans.yaml:
vlans:

 routing:

 vid: 7

 description: "Gateway Net"

 faucet_mac: 'de:ad:be:ef:00:07'

 faucet_vips: ['192.88.99.1/24']

 routes:

 - route:

 ip_dst: "0.0.0.0/0"

 ip_gw: ‘192.88.99.254'

Linux Router:
route add -net 192.168.0.0/16 gw eth-interior-net

16

LESSONS LEARNED (1 OF 3)

▸ Getting up and running with Faucet is super easy - follow the tutorial

▸ Anther required reading: http://docs.openvswitch.org/en/latest/tutorials/faucet/

▸ Open vSwitch is awesome!

▸ 90%+ of design + testing can be done with software

▸ Allied Telesis hardware has been rock solid

▸ Start small, grow slowly

▸ Follow the packet!

▸ Try out every feature available

▸ Keep an open mind. Many traditional networking concepts apply, many don’t 
https://www.youtube.com/watch?v=BDje6HGBwso Go to 23:10 mark

▸ Don’t run your controller off a switch it’s controlling (so much for a 100% OF controlled network) 

 ¯_(ツ)_/¯

17

http://docs.openvswitch.org/en/latest/tutorials/faucet/
https://www.youtube.com/watch?v=BDje6HGBwso

LESSONS LEARNED (2 OF 3)

▸ Highlights from the documentation

▸ Faucet Design and Architecture -
Faucet Openflow Switch Pipeline

▸ Vendor-Specific documentation
(Allied Telesis, Aruba, etc.)

▸ OpenFlow 1.3.x Specification

▸ Diagrams - need more

▸ Began our own stash of configs
and associated diagrams

18

LESSONS LEARNED (3 OF 3)

▸ Collect logs - as much as you can

▸ Save faucet.log files on your controller(s)

▸ Collect PCAP on your OpenFlow channel (assumes non-TLS)

▸ debug openflow on switches to a syslog server

▸ Follow a software development mindset

▸ Run tests against configs with OVS, then with hardware

▸ Script/automate as much as possible

▸ Not all switching hardware is created equally

▸ Brad quote from ONS2019: “I learned a lot more about vendor hardware architectures than I
expected to.”

19

STATUS OF OCT 2019

▸ ~300 physical interfaces, 4 switches controlled via Faucet in a stacked, L3 routing architecture

▸ Network is quiet, efficient, reconfigurable. Awesome!

▸ Controller and switch management interfaces are [almost] completely out-of-band (~7 switch ports)

▸ Had a few oddities when bridging legacy [dumb] switch into OF-controlled network

▸ OOB controller network is Faucet routed, but heavily ACL’d - desire for Gauge/Prometheus/
Grafana

▸ HW limitation errors fixed Aruba switches (thanks, Josh!) - See ‘port_table_scale_factor’ feature

▸ Built a second, smaller testbed for running new Faucet configs on Aruba hardware

▸ Re-designing the architecture (again)

▸ Integrating EdgeCore/NoviFlow switches into the network

▸ Adding additional controllers: redundancy & segmentation (based upon availability needs)

▸ Writing our own Ryu app for collecting OF messages and querying switch features

▸ Want to spend more time with Poseidon

20

PATH FORWARD 21

AT = Allied Telesis  
AR = Aruba (HPE) 
DS = Dumb Switch 
NF = NoviFlow

* 192.51.100.0/24 - IANA Reserved: Documentation (TEST-NET-2)

BONUS! - RASPBERRY PI 4 SDN CLUSTER 22

SPECIAL THANKS

▸ Nick Buraglio

▸ Brad Cowie

▸ Josh Bailey

▸ mab68 - don’t know who you are, but THANK YOU for your commits

▸ Rest of the FAUCET team

▸ Open vSwitch team

▸ SNL networking team - Rick Strong, David Burton, Will Stout

23

